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5.1 Introduction

Creating a compact, reliable source of terahertz (THz) radia-
tion is one of the most challenging problems in contemporary 
applied physics (Lee and Wanke, 2007). Despite the fact that 
THz technology is at the boundaries of microwave and photo-
nic technologies, it is quite underdeveloped compared to the 
achievements in the microwave or the photonic technology. 
Th ere are very few commercially available instruments for the 
THz frequency region, and most of them lack the precision 
required to perform accurate measurements. Th ere are also no 
miniaturized and low-cost THz sources. One of the latest trends 
in THz technology (Dragoman and Dragoman, 2004a) is to use 
single-walled carbon nanotubes (SWNTs) as building blocks of 
novel high-frequency devices.

An SWNT is a hollow cylindrical molecule made up of car-
bon atoms (Saito et al., 1998). We can formally consider the 
SWNT as a graphene sheet rolled up into a cylinder along the 
vector Rh connecting to crystallographically equivalent sites of 
the graphene lattice (see Figure 5.1). Th is vector is called the 
chiral vector and is usually defi ned in terms of the basic vectors, 
a1 and a2, of the graphene lattice: Rh = ma1 + na2, where m, n are 
integers. Th e dual index (m, n) is usually used to characterize 
SWNT type. Th ree diff erent SWNT types are defi ned: (m, 0) 
zigzag SWNTs, (m, m) armchair SWNTs, and (m, n) (0 < n ≠ m) 
chiral SWNTs. Th e SWNT radius, Rcn, and chiral angle, θ (the 
angle between the Rh and a1) are defi ned as follows:
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where b = 0.142 nm is the C–C bond length. Typically, SWNTs 
are 0.1–10 μm in length; their cross-sectional radius varies within 
the range 1–10 nm, while their chiral angle is 0 ≤ θcn ≤ 30°.

Th ere are several promising proposals of using carbon nan-
otubes for THz applications including a nanoklystron using 
extremely effi  cient high-fi eld electron emission from nano-
tubes (Dragoman and Dragoman, 2004a; Manohara et al., 2005; 
Di Carlo et al., 2006); devices based on negative diff erential 
conductivity (NDC) in large-diameter semiconducting SWNTs 
(Maksimenko and Slepyan, 2000; Pennington and Goldsman, 
2003); high-frequency resonant-tunneling diodes (Dragoman 
and Dragoman, 2004b) and Schottky diodes (Léonard and 
Tersoff , 2000; Odintsov, 2000; Yang et al., 2005; Lu et al., 2006); 
as well as electric-fi eld-controlled carbon nanotube superlat-
tices (Kibis et al., 2005a,b), frequency multipliers (Slepyan et 
al., 1999, 2001), THz amplifi ers (Dragoman and Dragoman, 
2005), and switches (Dragoman et al., 2006). Among others, the 
idea of SWNT-based optical devices enabling the control and 
enhancement of radiation effi  ciency on the nanoscale, i.e., nano-
scale antennas for THz, infrared, and visible light, is actively 
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discussed (Dresselhaus, 2004; Hanson, 2005; Burke et al., 2006; 
Slepyan et al., 2006). Noise properties and operational limits of 
such antennas are substantially determined by the thermal fl uc-
tuations of the electromagnetic fi eld.

In this chapter, several novel schemes are discussed (Kibis 
and Portnoi, 2005; Portnoi et al., 2006; Kibis et al., 2007, 2008; 
Nemilentsau et al., 2007; Portnoi et al., 2008) to utilize the physi-
cal properties of SWNTs for the generation and detection of THz 
radiation.

5.2 Electronic Properties of SWNTs

Electrodynamic processes in any medium are dictated by its 
electronic properties, although they may be missing in an 
explicit form of the macroscopic electrodynamics equations. 
In that sense, SWNTs are not an exception. Many researches 
(Charlier et al., 2007) have been devoted to the development 
of the theory of electronic properties of the SWNT. Both the 
sophisticated methods of modern solid-state physics and fi rst-
principles simulations are among them. In this section, we give 
only an elementary introduction for later use in the analysis of 
the THz radiation from SWNTs.

Each carbon atom in graphene and SWNT has four valence 
orbitals (2s, 2px, 2py, and 2pz). Th ree orbitals (s, px, and py) 
 combine to form in-plane σ orbitals. Th e σ bonds are strong 
covalent bonds responsible for most of the binding energy and 
elastic properties of the graphene sheet and SWNT. Th e remain-
ing pz orbital, pointing out of the graphene she et, cannot couple 
with σ orbitals. Th e lateral interaction with the neighboring pz 
orbitals creates delocalized π orbitals. Th e π bonds are perpen-
dicular to the surface of the SWNT and are responsible for the 
weak interaction between SWNTs in a bundle, similar to the 
weak interaction between graphene layers in pure graphite. Th e 
energy levels associated with the in-plane bonds are known to be 
far away from the Fermi energy in graphene, and thus do not play 
a key role in its electronic properties. In contrast, the bonding 
and antibonding π bands cross the Fermi level at  high-symmetry 

points in the Brillouin zone of graphene (Wallace, 1947). Th us, 
we restrict our consideration to the π electrons, assuming that 
their movement can be described in the framework of the tight-
binding approximation (Saito et al., 1998); the overlapping of 
wave functions of only the nearest atoms is taken into account. 
In the beginning, we apply this approach to the plane mono-
atomic graphite layer, and then show how the model must be 
modifi ed to analyze an SWNT.

To describe graphene π bands we use the 2 × 2 Hamiltonian 
matrix (Wallace, 1947):
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Here, γ1,2,3 are the overlapping integrals; px,y are the projections 
of the quasi momentum of electrons, p, on the corresponding 
axes; and ћ is the Planck constant. As the electronic  properties 
of graphene are isotropic in the in-plane, we set γ1 = γ2 = γ3 = γ0 in 
Equation 5.4, where γ0 ≃ 3 eV is the phenomenological param-
eter, which can be determined experimentally (see, e.g., Saito et 
al., 1998). Th e electron energy values are found as the eigenval-
ues of the matrix on the right side of (5.3) as
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Th e plus and minus signs in this equation correspond to con-
duction (c) and valence (υ) bands, respectively. Th e range of 
defi nition of the quasi momentum, p (the fi rst Brillouin zone), 
are the hexagons shown in Figure 5.2. Th e vertices are the Fermi 
points where ε = 0, which is indicative of the absence of the for-
bidden zone for π electrons in graphene.

Th e dispersion properties of electrons in SWNTs are quite 
diff erent from those in graphene, as a plane monolayer is trans-
formed into a cylinder. In a cylindrical structure, an electron 
located at the origin and an electron located at the position 
defi ned by the vector Rh = ma1 + na2 are identical. Hence, we 
should impose the periodic boundary conditions along the 
tube circumference on the wave functions of π electrons in 
SWNTs:

 Ψ + = Ψ = Ψ�/( ) ( ) ( ).hi
h e pRr R r r  (5.6)
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FIGURE 5.1 Graphene crystalline lattice. Each lattice node contains 
a carbon atom.
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Th e second equality here is due to the Bloch theorem. Th is 
leads to the quantization of the transverse quasi momentum of 
electrons:

 φ= � / ,cnp s R  (5.7)

where s is an integer. Th e cylindrical coordinate system with 
the z-axis oriented along the SWNT axis is used here. Th e 
axial projection, pz, of the quasi momentum is continuous. In 
order to derive the dispersion equation for zigzag SWNTs from 
Equation 5.5, one must perform the substitutions {px → pz, 
py → pϕ}, which yields
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For armchair SWNTs, the dispersion law is obtained from 
Equation 5.5 by means of the substitutions {px → pϕ, py → pz}. 
For chiral SWNTs, the analogous procedure is specifi ed by 
{px → pz cos θ + pϕ sin θ, px → pz sin θ − pϕ cos θ}.

It follows from Equation 5.7 that the fi rst Brillouin zone 
in SWNTs is transformed from a hexagon to a family of one-
dimensional zones defi ned by segments of straight lines con-
fi ned to the interior of the hexagon. Depending on the dual 
index (m,n), these segments can be oriented diff erently either 
by bypassing or crossing the Fermi points, as shown in Figure 
5.2. Correspondingly, the forbidden zone either appears or dis-
appears in the electron spectrum of an SWNT. In the absence 
of the forbidden zone, a material is a metal; otherwise, it is a 
semiconductor. Th e condition for the forbidden zone to appear 
is (Saito et al., 1998)

 − ≠ 3 ,m n q  (5.9)

where q is an integer. For armchair SWNTs, this condition is 
not valid at any m, and the forbidden zone is always absent, thus 
proving that the armchair SWNTs are always metallic. For zigzag 
SWNTs, the zone appears when m ≠ 3q, and, thus, zigzag SWNTs 
can be either metallic or semiconducting, depending on Rcn.

Strictly speaking, the curvature of the SWNT surface breaks 
the isotropic symmetry of electronic properties so that the 
overlapping integrals, γ1,2,3, in Equation 5.4 turn out to be dif-
ferent from one another. For the zigzag SWNTs, these integrals 
are as follows (Kane and Mele, 1997; Lin and Chuu, 1998): 

2 2
1 0 2 3 0, (1 3 /32 ) .cnb Rγ = γ γ = γ = − γ  Th en, instead of Equation 

5.8, we have the dispersion equation:
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which shows the presence of the forbidden zone even for 
m = 3q. However, this zone is much narrower compared to 
that for m ≠3q.

Th e nontrivial electronic structure of SWNTs dictates 
their response to the electromagnetic fi eld. Due to the quasi 
one-dimensional nature of SWNTs, their optical response 
is strongly anisotropic. Th e optical response to the axially 
polarized incident electric fi eld signifi cantly exceeds the opti-
cal response to the electric fi eld polarized transversely to the 
CNT (carbon nanotube) axis (Tasaki et al., 1998; Milošević et 
al., 2003; Murakami et al., 2005). Due to the quantization of 
the transverse quasi momentum of electrons (Equation 5.7), 
divergences arise in the electronic density of states (DOS) of 
SWNTs (Saito et al., 1998). Th ese divergences, which are known 
as Van Hove singularities, produce discrete energy levels or 
“subbands,” the energy of which is determined solely by the 
chirality of SWNTs (Saito et al., 1998). As the inter-subband 
gap corresponds to the energy of infrared to visible light, the 
spectra of optical conductivity of an SWNT demonstrate the 
number of resonant lines in the region.

In the spectral range of 1–100 THz, the nonmonotonic fre-
quency dependence of the refl ectance and transmittance of 
CNT-based composite media that does not follow from the 
standard Drude theory has been observed (Ugawa et al., 
1999; Ruzicka et al., 2000). Ugawa et al. (1999) found empiri-
cally that the eff ective permittivity of a CNT-based composite 
medium can be represented as a superposition of Drudian and 
Lorentzian functions. Th e spectral width of the resonance is of 
the order of the resonant frequency. Th e origin of this resonance 
could be attributed the inhomogeneously broadened geometric 
resonance in an isolated CNT (Slepyan et al., 2006).

5.3 Thermal Radiation from SWNTs

In this section, we investigate the thermal electromagnetic fi eld 
radiated by an SWNT at temperature T placed in cold environ-
ment and show that the thermal radiation from metallic SWNTs 
can serve as an effi  cient source of the THz radiation. Our consid-
eration is based on the method developed by Rytov (1958), which 
known as fl uctuational electrodynamics (see details in Lifshitz 
and Pitaevskii, 1980; Rytov et al., 1989; Joulain et al., 2005). Th e 
key idea of this method is that the thermal radiation sources in 

pφpφ

(b)

pz pz

(a)

2πћ/3b

FIGURE 5.2 First Brillouin zone for (a) zigzag and (b) armchair 
SWNTs.
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a material are the fl uctuation currents, which are due to the ran-
dom thermal motion of charged carriers the material consists. 
To determine the statistical properties of the electromagnetic 
fi eld we have to know the statistical properties of random cur-
rents and the radiation of the elemental volume of the material. 
Th e fi rst information is given by the fl uctuation-dissipative 
theorem while the second information is given by the Green ten-
sor of the system. It should be noted that the application of the 
equilibrium laws, such as the fl uctuation-dissipative theorem, is 
not very rigorous in this case, but it is justifi ed when the role of 
the heat transport phenomena (such as thermal conductivity) is 
negligible. Hence, we will not consider them further.

Th e thermal radiation from SWNTs is of interest not only 
because of possible applications of THz device. Fundamental 
interest to the thermal radiation is dictated by the ability of 
nanostructures to change the photonic local density of states 
(LDOS), i.e., the electromagnetic vacuum energy (Agarwal, 
1975; Joulain et al., 2003; Novotny and Hecht, 2006). Th e eff ect 
has been observed in microcavities, photonic crystals, and nano-
particles in the vicinity of surface-plasmon resonances (Novotny 
and Hecht, 2006). Th us, as the electromagnetic fl uctuations are 
defi ned by photonic LDOS, the investigation of the thermal radi-
ation is expected to bring new opportunities for the reconstruc-
tion of photonic LDOS in the presence of nanostructures. Th e 
apertureless scanning near-fi eld optical microscopy provides 
a possibility for the experimental detection of LDOS (Joulain 
et al., 2003). In turn, the photonic LDOS is a key physical factor 
defi ning a set of well-known quantum electrodynamic eff ects: 
the Purcell eff ect and the electromagnetic friction (Novotny 
and Hecht, 2006), the Casimir–Lifshitz forces (Lifshitz and 
Pitaevskii, 1980), etc.

Th ermal radiation in systems with surface plasmons is known 
to be considerably diff erent from blackbody radiation (Carminati 
and Greff et, 1999; Henkel et al., 2000; Schegrov et al., 2000). 
Earlier theoretical studies of SWNTs showed the existence of 
low-frequency plasmon branches (Lin and Shung, 1993) and the 
formation of strongly slowed-down electromagnetic surface waves 
in SWNTs (Slepyan et al., 1999). Such waves defi ne a pronounced 
Purcell eff ect in SWNTs (Bondarev et al., 2002) and the potentiality 
of SWNTs in the development of Cherenkov-type nano-emitters 
(Batrakov et al., 2006). Geometrical resonances—standing surface 
waves excited due to the strong refl ection from the SWNT tips—
qualitatively distinguish SWNTs from the planar structures inves-
tigated in Carminati and Greff et (1999), Henkel et al. (2000), and 
Schegrov et al. (2000). One can expect an essential role of these 
resonances in the formation of SWNTs’ thermal radiation.

5.3.1 Fluctuation-Dissipative Theorem

Th e fl uctuation-dissipative theorem relates the fl uctuations of 
physical quantities to the dissipative properties of the system 
when it is subjected to an external action. We are interested 
in the space–time correlation function of the electromagnetic 
fi eld fl uctuations 〈An (r,t)Am(r′,t′)〉, where A(r,t) is the vector 
potential of the electromagnetic fi eld. We use the Hamiltonian 

gauge, which implies the scalar potential to be equal to zero for 
the electromagnetic fi eld. For a stationary fi eld, the correlation 
function depends on the time diff erence, t − t′, only. Th e Fourier 
transform of the correlation function is called the cross-spectral 
density (Joulain et al., 2005):

 

( )*( ) ( ) ( , ) ( , ) ( ).i t t
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Th en the fl uctuation-dissipative theorem for the electromag-
netic fi eld vector potential is formulated as follows (Lifshitz and 
Pitaevskii, 1980):

 ω

Θ ω⎡ ⎤= + ω⎡ ⎤⎣ ⎦⎢ ⎥ω⎣ ⎦
�1 2 1 2

* 2 ( , )( ) ( ) Im ( , , ) ,n m nm
TA A Gr r r r

 
(5.12)

where
G_(r1,r2,ω) is the retarded Green tensor
n, m = x, y, z designates the Cartesian coordinate system axis
Θ(ω,T) = ħω/[exp(ħω/kBT)−1], ħ and kB are the Planck and 

Boltzmann constants, respectively

Th e fi rst term in square brackets is due to the zero vacuum 
fl uctuations, and will be omitted further. Th us, to calculate the 
intensity of thermal radiation emitted by an SWNT, we elabo-
rate the method of calculation of the electromagnetic fi eld Green 
tensor in the vicinity of a CNT.

5.3.2 Free-Space Green Tensor

Th e electromagnetic fi eld Green tensor is defi ned by the equation

 1 1
2

1 2 1 2( ) ( , , ) 4 ( ),k∇ ×∇ × − ω = π δ −r r G r r I r r  (5.13)

where
∇ 1r  indicates that operator ∇ acts only on the variable r1 of the 

Green tensor
I_ is the unit tensor
k = ω/c, ω is the electromagnetic fi eld frequency
c is the speed of light in vacuum

In general, this equation should be supplemented by boundary 
conditions.

In the Cartesian coordinate system, Equation 5.13 takes the 
following index form:

     
2

2
1 2 1 2

1 1
( , , ) 4 ( ),iln nkj ij jm im

l k
k G

x x
⎛ ⎞∂ε ε − δ ω = πδ δ −⎜ ⎟∂ ∂⎝ ⎠

r r r r  (5.14)

where x1l,k = x1, y1, z1 and summation over the repeated indices is 
assumed. For each index m, Equation 5.14 gives us an indepen-
dent equation that describes the evolution of the mth column of 
the Green tensor. Th us, for a given m, the column Gnm(r1,r2,ω) 
can formally be considered as a fi eld vector, G(m)(r1;r2), induced 
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at point r1 by a delta source located at point r2; here m and r2 are 
parameters. Let us introduce the Hertz vector, ∏(m)(r1;r2):

 = + ∇∇⋅( ) 2 ( )
1 2 1 2( ; ) ( ) ( ; )m mkG r r r rΠ  (5.15)

Th en we obtain three independent equations instead of 
Equation 5.14:

 
πΔ + Π = − δ −2 ( )

1 2 1 22
4( ) ( ; ) ( ),m

mk r r e r r
k  

(5.16)

where em = (δxm,δym,δzm) is the basis vector of the Cartesian coor-
dinate system. In the free-space case, the solution of Equation 
5.16 is straightforward, (Jackson, 1999) and the free-space Hertz 
vector has the following form:
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is the free-space Green function. Th us, we obtain the stan-
dard expression for the free-space Green tensor (Lifshitz and 
Pitaevskii, 1980):

 −ω = + ∇ ⊗∇ ω1 1
(0) 2 (0)

1 2 1 2( , , ) ( ) ( , , )k Gr rG r r I r r  (5.19)

with ∇ ⊗∇1 1r r  as the operator dyadic acting on variables r1.

5.3.3 Green Tensor in the Vicinity of SWNT

Consider an isolated single-walled CNT of cross-sectional radius 
Rcn and length L, aligned along the z axis of the Cartesian coor-
dinate basis (x, y, z) with the origin in the geometrical center of 
the CNT (see Figure 5.3). We restrict our consideration to the 
case Rcn << 2π/k, which implies that the incident fi eld should be 
slowly varied within the CNT cross section.

To calculate the electromagnetic fi eld Green tensor, we should 
solve Equation 5.13 with the eff ective boundary conditions 
(Slepyan et al., 1999) imposed on the SWNT surface. Th e general 
solution of the problem can be presented as follows:

 ω = ω + ω(0) (SC)
1 2 1 2 1 2( , , ) ( , , ) ( , , ),G r r G r r G r r  (5.20)

where G_(0)(r1,r2,ω) is the solution of the inhomogeneous Equation 
5.13, for the free-space case and G_(SC) satisfi es the equation

 ∇ ×∇ × − ω =1 1
2 (SC)

1 2( ) ( , , ) 0kr r G r r  (5.21)

and boundary conditions on the SWNT surface. From a formal 
point of view, G_ (SC) can be considered as the free-space Green 
tensor scattered by the SWNT (see Figure 5.3). To calculate the 
scattered Green tensor, we use the method developed in Lifshitz 
and Pitaevskii (1980, see problem 1 aft er paragraph 77). Each 
column of the free-space Green tensor induces current density 

( )m
zj  on the SWNT surface, which generates the mth column of 

the scattered Green tensor, m = x, y, z. We take into account only 
the axial component of the induced current due to the fact that 
the SWNT length is much greater than the SWNT radius. By 
analogy with the previous section, we introduce three indepen-
dent scattered Hertz vectors, ∏SC(m)(r1;r2) = ez∏SC(m)(r1;r2). Each 
Hertz vector has only z nonzero component. Further, we omit 
parameter r2 in the notation of the Hertz vector to simplify the 
designations. Th ese Hertz vectors satisfy scalar equations,

 Δ + Π =2 SC( )( ) ( ) 0,mk r  (5.22)

and eff ective boundary conditions on the CNT surface. Th us 
we have to solve three equations (Equation 5.22) to calculate 
scalar quantities ΠSC(m). We could do this in the arbitrary coor-
dinate system. We use the cylindrical coordinate system (ρ,ϕ,z) 
in which the eff ective boundary conditions (Slepyan et al., 1999, 
2006) have the simplest form:
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where
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Vector R designates the point on the CNT surface, and in the 
cylindrical coordinate system, has the following form: {Rcn,ϕ,z}. 
Due to the cylindrical symmetry of the system, the scattered Hertz 
potential does not depend on the azimuthal variable, ϕ. Here,

=

∂ε ∂σ ω = −
π ν − ω ∂ ∂∑∫�

2

1

2 ( , ) ( , )( )
3 ( )

m
c z z

zz z
z zs

e p s f p s dp
mb i p p  

(5.26)
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FIGURE 5.3 Free-space Green tensor scattering by an SWNT.
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is the axial conductivity of the zigzag SWNT (Slepyan et al., 1999), 
f(pz,s) is the equilibrium Fermi distribution, and v = (1/3) × 1012 
s−1 is the relaxation frequency. Applying the Green theorem 
(Jackson, 1999) to Equations 5.22 through 5.24, we obtain the 
integral equations for the normalized axial current density, 

( )
2( ; ),m

zj z r  induced on the CNT surface by the incident electric 
fi eld, ω(0)

2( , , )zmG R r  (Nemilentsau et al., 2007):
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−
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(5.27)

where C1,2 are constants determined by the edge conditions, 
± =( )

2( /2; ) 0m
zj L r  (Slepyan et al., 2006),

 

π

= − φ
σ ω ω ∫

0

exp( | |) 2( ) ,
2 ( )

ikr
cn

zz

ik z iR eK z d
ik r

 
(5.28)

and 2 2 2
cn4 sin ( /2).r z R= + φ  Aft er three independent integral 

equations have been solved (Equation 5.27) (for three diff erent 
values of m = x, y, z) and three current density values have been 
calculated, we again return to the Cartesian coordinate system.

Finally, we can present the solution of the scattering problem 
in the form of the simple layer potential (Colton and Kress, 1983; 
Nemilentsau et al., 2007):

 

(0)
1 2 1 2 2
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2 1
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× ω φ∫ ∫
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(5.29)

While deriving Equation 5.29, we assumed the incident fi eld 
source distance from the CNT farther than its radius; therefore, 
we can neglect the of the current ( )m

zj  dependence on the azi-
muthal variable, ϕ.

Equation 5.29 with an arbitrary ( )m
zj  satisfi es the aforemen-

tioned equation for the retarded Green tensor and the radiation 
condition at |r1 − r2| → ∞. Peculiar electronic properties of CNTs 
(Dresselhaus et al., 2000) infl uence the Green tensor through the 
axial conductivity σzz(ω) (for details, see Slepyan et al. (1999)). 
Th e index m and the variable r2 appear in Equations 5.29 and 
5.27 only as parameters. Note that these equations, as they cou-
ple the Green tensor of the system considered and the free-space 
Green tensor, play the role of the Dyson equation for CNTs.

It is important that the role of scattering by CNTs is not 
reduced to a small correction to the free-space Green tensor. 
Th is means that the Born approximation conventionally used 
for solving the Dyson equation (Lifshitz and Pitaevskii, 1980) 
becomes inapplicable to our case. Because of this, the direct 

numerical integration of Equation 5.27 has been performed with 
integral operators approximated by a quadrature formula and 
subsequent transition to a matrix equation.

5.3.4 Thermal Radiation Calculation

Let us calculate the thermal radiation of a hot SWNT placed into 
an optically transparent cold environment. As the fl uctuation-
dissipative theorem (Equation 5.12) is applicable only at thermal 
equilibrium, we cannot directly apply it in this case.

To solve the problem, let us consider in more detail the case 
when the SWNT is in thermal equilibrium with the environment. 
At thermal equilibrium, the thermal fl uctuation fi eld in the system 
is the superposition of three diff erent fi elds: thermal electromag-
netic fi eld radiated by the SWNT itself; blackbody radiation of the 
surrounding medium in the absence of the CNT, A(0); and the fi eld 
A(s) resulting from the scattering of radiation of the medium by 
the SWNT. In the case of the cold medium, the only electromag-
netic fi eld radiated by the SWNT remains. Th us, to calculate the 
thermal radiation of the hot SWNT placed in the cold medium, 
we should calculate the total thermal electromagnetic fi eld radi-
ated in the equilibrium and separate the blackbody contribution.

Th e thermal radiation intensity in equilibrium is easily calcu-
lated by substituting Equation 5.29 for the electromagnetic fi eld 
Green tensor to Equation 5.12 for the fl uctuation-dissipative 
theorem. To separate the blackbody radiation contribution, 
we use the method developed in Lifshitz and Pitaevskii (1980, 
see problems aft er Sect. 77). We introduce the blackbody radiation 
vector potential,

 = +( ) (0) (s)( ) ( ) ( ),BA r A r A r  (5.30)

and calculate the correlator:

 
ω
≡ ω( ) ( ) ( )

1 2 1 2
*( ) ( ) ( , , ).B B B

n m nmA A Dr r r r  (5.31)

Th en, the electric fi eld intensity of the SWNT thermal radiation 
in the case when the SWNT temperature is much higher that 
the temperature of the surrounding medium, Iω(r0) = |E(r0)|2 is 
given, in view of the relation En = −ikAn, by

 ω ω
=

⎡ ⎤= − ω⎣ ⎦∑
3

2 2 ( )
0 0 0 0

1

( ) | ( ) | ( , , ) .B
n nn

n

I k A Dr r r r
 

(5.32)

To calculate the blackbody radiation correlator, we should calcu-
late the scattered vector potential, A(s). To do this, we should solve 
Equations 5.22 through 5.25 with A(0) instead of the free-space 
Green tensor, (0),zmG  in Equation 5.25. By analogy with Equation 
5.29, the vector ( )

1( ),B
nA r  potential, is written as

 

/2 π

−

= + ω φ∫ ∫
2

( ) (0) (0)
1 1 1

/2 0

( ) ( ) ( ) ( , , ) ,
L

cnB
n n nz

L

RA A j z G d dz
c

r r r R
 

(5.33)

where the current density, j(z), induced on the SWNT surface by 
the free-space fl uctuation electromagnetic fi eld, A(0), is the solution 
of the integral equation

AQ3
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Th e second term in Equation 5.33 describes scattering of the 
free-space blackbody radiation by the SWNT. To calculate ( ),B

nmD  
we utilize Equation 5.33 and take into account that the correlator, 

(0) (0)
1 2

*A ( ) ( )n mA
ω

r r  is defi ned by Equation 5.12 with the free-

space Green tensor, ω(0)
1 2( , , )nmG r r , on the right-hand side.

5.3.5 Numerical Results

In this section, we present the results of the numerical cal-
culations of the thermal radiation emitted by metallic (15,0) 
(see Figure 5.4) and semiconducting (23,0) SWNTs (see Figure 
5.5). Th e following parametrization of the radius vector is used 
throughout this section:

 = ρ φ = ρ φ + ρ φ +{ , , } cos sin .x y zz zr e e e  (5.35)

Th e spectra of the thermal radiation from the SWNT (15,0) at 
diff erent distances from the SWNT axis are presented in Figure 
5.4a and b presents one of the spectra in the logarithmic scale. 
Th e spectrum depicted in Figure 5.4a demonstrates a number 
of equidistant discrete spectral lines with decreasing intensities 
superimposed by the continuous background. Such a structure 

is inherent to spectra both in the far-fi eld (dashed line) and near-
fi eld (solid line) zones. Th e peculiarity of the near-fi eld zone is 
the presence of additional spectral lines absent in the far-fi eld 
zone. Th us, the thermal radiation spectra presented in the fi g-
ure qualitatively diff er from both blackbody radiation (Lifshitz 
and Pitaevskii, 1980) and radiation of semi-infi nite SiC samples 
(Schegrov et al., 2000). In the latter case, the discrete spectrum is 
observed only in the near-fi eld zone (Schegrov et al., 2000).

Th e comparison of the thermal radiation and the SWNT’s 
polarizability spectra (Slepyan et al., 2006) depicted in Figure 
5.4a reveals the coincidence in the far-fi eld zone of the thermal 
radiation resonances and the polarizability resonances. Th e 
latest are the dipole geometrical resonances of surface plas-
mons (Slepyan et al., 2006) defi ned by the condition Re[κ(ω)]
L ≅ π(2s − 1), with κ(ω) as the plasmon wavenumber; s is a 
positive integer. It should be noted that the polarizability (and 
the thermal radiation) resonances are found to be signifi cantly 
shift ed to the red as compared to the perfectly conducting wire 
of the same length, because of the strong slowing-down of 
surface plasmons in SWNTs: Re[κ(ω)]/k ≈ 100 (Slepyan et al., 
1999). In particular, for L = 1 μm, the geometrical resonances 
fall into the THz frequency range. Th e attenuation is small 
in a wide frequency range below the interband transitions. 
Additional spectral lines in the near-fi eld zone are described by 
the condition Re[κ(ω)]L ≅ 2πs. We refer to these resonances as 
quadrupole geometric resonances because the current density 
distribution for these modes is antisymmetrical with respect 
to z = 0 and, consequently, the dipole component of their fi eld 
is identically zero. Th us, the resonant structure of the thermal 
radiation spectra is determined by the fi nite-length eff ects and 
also depends on the peculiar conductivity of SWNTs. Note that 
a similar structure of the thermal radiation spectra is predicted 
for the two-dimensional electron gas (Richter et al., 2007). 
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FIGURE 5.4 (a) Th ermal radiation spectra of a metallic (15,0) SWNT. 
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et al., Phys. Rev. Lett., 99, 147403, 2007.)
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Resonances in the article by Richter et al. (2007) are due to the 
excitations of other physical nature—optical phonon modes of 
the barrier material.

Th e presence of singled out resonances illustrated in Figure 
5.4a allows us to propose metallic SWNTs as far-fi eld and near-fi eld 
thermal antennas for the THz range (optical thermal antennas 
based on photonic crystals have recently been considered in 
the article by Laroche et al. (2006) and Florescu et al. (2007). 
Taking into account the high temperature stability of SWNTs, 
the SWNT thermal antennas can be excited by Joule heating 
from the direct electric current. Low-frequency alteration of 
the current allows the amplitude modulation of thermal emis-
sion and, consequently, allows the use of the thermal emission 
for information transmission (similar to modulated RF fi elds 
in present-day radioengineering). Th e scattering pattern of the 
thermal antenna can be calculated using the approaches devel-
oped in Hanson (2005) and Slepyan et al. (2006) and is found 
to be partially polarized and directional. A polarization of the 
thermal radiation from bundles of multi-walled SWNTs has 
been observed experimentally in Li et al. (2003). Th e blackbody 
spectrum reported in Li et al. (2003) is due to the inhomoge-
neous broadening originated from the SWNT length and radius 
dispersion and multi-walled eff ects. Moreover, the observation 
was made above the frequency range of surface plasmons.

According to the article by Hanson (2005), Slepyan et al. 
(2006), and Burke et al. (2006) the maximal effi  ciency of vibrator 
SWNT antennas is reached at frequencies of the surface-plas-
mon dipole resonances. Figure 5.4a shows that the intensities of 
spectral lines of the thermal radiation go down with the reso-
nance number much slowly than the polarizability peaks. Th is 
means that the signal–noise ratio for the SWNT-based antennas 
is maximal for the fi rst resonance and decreases fast with the 
resonance number.

As diff erent from metallic SWNTs, semiconducting ones do 
not reveal isolated resonances in both far-fi eld and near-fi eld 
zones (see Figure 5.5 as an illustration). Such a peculiarity can 
easily be understood by accounting for the strong attenuation of 
surface plasmons in semiconducting SWNTs, whereas the slow-
ing down remains of the same order. Th at is why in this case 
the Q factor of geometrical resonances turns out to be substan-
tially smaller and the resonances do not manifest themselves as 
separated spectral lines. In the same way, the thermal radiation 
intensity of semiconducting SWNTs is substantially smaller than 
that of metallic ones and displays qualitatively diff erent spectral 
properties in the near-fi eld zone: monotonous growth of the 
intensity with frequency inherent to the far-fi eld zone changes 
into monotonous declining (see Figure 5.5a). As the thermal 
spectra are strongly dependent on the SWNT conductivity type 
and length, the near-fi eld thermal radiation spectroscopy pro-
posed in Schegrov et al. (2000) for testing the surface-plasmon 
structures can be expanded to SWNTs.

Figure 5.5b demonstrates that in the frequency range consid-
ered, the black-body radiation intensity considerably exceeds the 
thermal radiation of semiconducting SWNTs: ω ω� ( ).BI I  In the 
regions between geometrical resonances the same property is 

inherent to metallic SWNTs (see Figure 5.4b). Th is means that 
CNTs as building blocks for nanoelectronics and nanosensorics 
possess uniquely low thermal noise and, thus, provide high elec-
tromagnetic compatibility on the nanoscale: Th eir contribution 
to the electromagnetic fl uctuations in nanocircuits is negligibly 
small as compared to the contribution of dielectric substrate. 
More generally, the latter example illustrates the peculiarity of 
the electromagnetic compatibility problem on the nanoscale, 
motivating future research investments into the problem.

Next, we have studied the spatial structure of the electromag-
netic fl uctuations near SWNTs, characterized by the normalized 
fi rst-order correlation tensor:
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(5.36)

Th e axial–axial component of this tensor is depicted in Figure 
5.6. Th e fi gure clearly displays the distinctive behavior of the 
correlation in the far- and near-fi eld zones. In the vicinity of 
geometrical resonances, where Re(κ)L ∼ 1, the near-fi eld zone 
is defi ned by the condition ρ <∼ L. Because of strong slowing 
down of surface plasmons in SWNTs (Slepyan et al., 1999), 
the latter condition corresponds to kρ << 1; for the fi rst geo-
metrical resonance in the 1 pm length SWNT, depicted in 
Figure 5.6, kρ <∼ 0.06. Th us, the fi gure demonstrates a strong 
correlation between points inside the near-fi eld zone (curves 
1–3) and its fast falling down as ρ increases, indicating a weak 
correlation between near- and far-fi eld zones. Physically, this 
is related to the fact that the dominant fi eld component in 
the near-fi eld zone is a nonradiative surface plasmon while 
radiative modes dominate in the far-fi eld zone. Th e latter 
condition also explains that in the far-fi eld zone, the correla-
tion function is well approximated by the blackbody radiation 
law, sin(kρ)/kρ, with the radial correlation length ∼ 1/k. Note, 
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that the long-range spatial correlation characteristics for sur-
face-plasmon planar structures (Carminati and Greff et, 1999; 
Henkel et al., 2000) are found to be absent in SWNTs. Th e rea-
son is that SWNTs in the vicinity of geometrical resonances 
are electrically small oscillators (kL << 1) with wide scattering 
patterns (Slepyan et al., 2006).

5.4  Quasi-Metallic Carbon Nanotubes 
as Terahertz Emitters

Th e next scheme of the THz generation (Kibis and Portnoi, 2005; 
Kibis et al., 2007) is based on the electric-fi eld an induced heat-
ing of electron gas in an SWNT, resulting in the inversion of 
population of optically active states with the energy diff erence 
within the THz spectrum range. It is well known that the elastic 
backscattering processes in metallic SWNTs are strongly sup-
pressed (Ando et al., 1997), and in a high-enough electric fi eld 
charge carriers can be accelerated up to the energy allowing 
emission of optical/zone-boundary phonons. At this energy, 
corresponding to the frequency of about 40 THz, the major 
scattering mechanism switches on abruptly, resulting in cur-
rent saturation(Yao et al., 2000; Freitag et al., 2004; Javey et al., 
2004; Park et al., 2004; Perebeinos et al., 2005). As will be shown 
hereaft er, for certain types of carbon nanotubes, the heating of 
electrons to the energies below the phonon-emission threshold 
results in a spontaneous THz emission with the peak frequency 
controlled by an applied voltage.

Th e electron energy spectrum, ε(k) (Equation 5.8), of a metal-
lic SWNT in the vicinity of the Fermi energy linearly depends on 
the electron wave vector, k, and has the form ε(k) = ±ħvF |k − k0|, 
where vF ≈ 9.8 × 105 m/s is the Fermi velocity of graphene, which 
corresponds to the commonly used tight-binding matrix ele-
ment, γ0 = 3.033 eV (Saito et al., 1998; Reich et al., 2004). Here 
and in what follows, the zero of energy is defi ned as the Fermi 

energy position in the absence of an external fi eld. When the 
voltage, V, is applied between the SWNT ends, the electron dis-
tribution is shift ed in the way shown by the thick lines in Figure 
5.7a, corresponding to the fi lled electron states.

Th is shift  results in inversion of population and, correspond-
ingly, in optical transitions between fi lled states in the conduc-
tion band and empty states in the valence band. Th e spectrum 
of optical transitions is determined by the distribution function 
for hot carriers that, in turn, depends on the applied voltage 
and scattering processes in the SWNT. It is well known that the 
major scattering mechanism in SWNTs is due to the electron–
phonon interaction (Yao et al., 2000; Javey et al., 2004; Park et al., 
2004; Perebeinos et al., 2005). Since the scattering processes 
erode the inversion of electron population, an optimal condi-
tion for observing the discussed optical transitions takes place 
when the length of the SWNT L < lac, where the electron mean-
free path for acoustic phonon scattering is lac ≈ 2 μm (Park et al., 
2004). Further, only such short SWNTs with ideal Ohmic con-
tacts (Javey et al., 2004) are considered in the ballistic transport 
regime, when the energy acquired by the electron on the whole 
length of the tube, Δε = eV, does not exceed the value of ħΩ = 
0.16 eV at which a fast emission of high-energy phonons begins 
(Park et al., 2004). In this so-called low-bias regime (Yao et al., 
2000; Javey et al., 2004; Park et al., 2004), in which the current in 
the nanotube is given by the Büttiker–Landauer-type formula, 
I ≈ (4e2/h)V, the distribution function of hot electrons is

 
< − < Δε⎧⎪= ⎨ − > Δε⎪⎩
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0 F

1, 0 / 2
( ) .

0, / 2e
k k v

f k
k k v  

(5.37)

Th e distribution function for hot holes, fh(k), has the same form 
as fe(k).

Let us select an SWNT with crystal structure most suitable for 
the observation of the discussed eff ect. First, the required nano-
tube should have metallic conductivity, and, second, the optical 
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FIGURE 5.7 (a) Th e scheme of THz photon generation by hot carriers in quasi-metallic SWNTs. (b) Th e spectral density of spontaneous emission 
as a function of frequency for two values of applied voltage: solid line for V = 0.1 V and dashed line for V = 0.15 V. Th e inset shows the directional 
radiation pattern of the THz emission with respect to the nanotube axis. (From Portnoi, M.E. et al., Superlattices Microstruct., 43, 399, 2008.)
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transitions between the lowest conduction subband and the top 
valence subband should be allowed. SWNTs having a true metal-
lic energy band structure, for which the energy gap is absent for 
any SWNT radius, are armchair (n,n) SWNTs only (Kane and 
Mele, 1997; Ouyang et al., 2001; Reich et al., 2004; Gunlycke et 
al., 2006; Li et al., 2006). However, for armchair SWNTs, the 
optical transitions between the fi rst conduction and valence sub-
bands are forbidden (Milošević et al., 2003; Jiang et al., 2004). 
So, for the observation of THz generation, it is suitable to use the 
so-called quasi-metallic (n, m) SWNTs with n − m = 3p, where p 
is a nonzero integer. Th ese nanotubes, which are gapless within 
the frame of a simple zone-folding model of the π-electron gra-
phene spectrum (Saito et al., 1998), are in fact  narrow-gap semi-
conductors due to curvature eff ects. Th eir bandgap is given by 
ε = θ� 2

g F cos3 /(8 )cnv b R  (Kane and Mele, 1997; Gunlycke et al., 
2006). It can be seen from the expression for εg that the gap is 
decreasing rapidly with the increasing nanotube radius. For 
large values of Rcn, this gap can be neglected even in the case of 
moderate applied voltages due to Zener tunneling of electrons 
across the gap. It is easy to show in a fashion similar to the origi-
nal Zener’s work (Zener, 1934) that the tunneling probability 
in quasi-metallic SWNTs is given by −αε �2

g Fexp( / )eE v , where α 
is a numerical factor close to unity.* For example, for a zigzag 
(30,0) SWNT the gap is εg ≈ 6 meV, and the Zener breakdown 
takes place for the electric fi eld E ∼ 10−1 V/μm. Since almost the 
whole voltage drop in the ballistic regime occurs within the few-
nanometer regions near the contacts (Svizhenko and Anantram, 
2005), a typical bias voltage of 0.1 V corresponds to an electric 
fi eld, which is more than suffi  cient to achieve a complete break-
down. In what follows, all calculations are performed for a zig-
zag (3p, 0) SWNT of large enough radius, Rcn, and for applied 
voltages exceeding the Zener breakdown, so that the fi nite-gap 
eff ects can be neglected. Th e obtained results can be easily gen-
eralized for any quasi-metallic large-radius SWNT.

Optical transitions in SWNTs have been a subject of exten-
sive research (see, e.g., Grüneis et al., 2003; Milošević et al., 
2003; Jiang et al., 2004; Popov and Henrard, 2004; Saito et al., 
2004; Goupalov, 2005; Oyama et al., 2006). Let us treat these 
transitions using the results of the nearest-neighbor orthog-
onal 7r-electron tight-binding model (Saito et al., 1998). 
Despite its apparent simplicity and well-known limitations, 
this model has been extremely successful in describing low-
energy optical spectra and electronic properties of SWNTs 
(see, e.g., Sfeir et al. (2006) for one of the most recent manifes-
tations of this model’s success). The main goal is to calculate 
the spectral density of spontaneous emission, Iν, which is the 
probability of optical transitions per unit time for the photon 
frequencies in the interval (ν, ν + dν) divided by dν. In the 
dipole approximation (Berestetskii et al., 1997), this spectral 
density is given by

* For the energy spectrum near the band edge given by 
⎡ ⎤ε ± ε + −⎣ ⎦�

1/22 2 2 2
g F 0= /4 ( )v k k , it can be shown that α = π/4.

ν
π ν= Ψ Ψ δ ε − ε − ν∑

2 2

3
,

8 ˆ( ) ( ) | | ( ).
3 e i h f f z i i f

i f

eI f k f k v h
c  

(5.38)

Equation 5.38 contains the matrix element of the electron veloc-
ity operator. In the frame of the tight-binding model, this matrix 
element for optical transitions between the lowest conduction 
and the highest valence subbands of the (3p, 0) zigzag SWNT 
can be written as (Jiang et al., 2004; Grüneis et al., 2003)

 
ω

Ψ Ψ = δ
�

,ˆ| | ,
8 f i

if
f z i k kv  (5.39)

where ħωif = εi − εf is the energy diff erence between the initial 
(i) and the fi nal (f) state. Th ese transitions are associated with 
the light polarized along the nanotube axis z, in agreement with 
the general selection rules for SWNTs (Milošević et al., 2003). 
Substituting Equation 5.39 in Equation 5.38 and performing 
necessary summation, we get

 ν
π ν= πν πν
�

2 2 2 3

F F 3
F

( / ) ( / ) .
6e h

e bI Lf v f v
c v  (5.40)

Equation 5.40 has broader applicability limits than the consid-
ered case of L < lac and eV < ħΩ, in which the distribution func-
tions for electrons and holes are given by Equation 5.37. In the 
general case, there is a strong dependence of Iν on the distribu-
tion functions, which have to be calculated taking into account 
all the relevant scattering mechanisms (Yao et al., 2000; Javey 
et al., 2004; Park et al., 2004; Perebeinos et al., 2005). In the 
discussed ballistic regime, the spectral density has a universal 
dependence on the applied voltage and photon frequency for 
all quasi-metallic SWNTs. In Figure 5.7b, the spectral density 
is shown for two values of the voltage. It is clearly seen that the 
maximum of the spectral densities of emission has a strong volt-
age dependence and lies in the THz frequency range for experi-
mentally attainable voltages. Th e directional radiation pattern, 
shown in the inset of Figure 5.7b, refl ects the fact that the emis-
sion of light polarized normally to the nanotube axis is forbid-
den by the selection rules for the optical transitions between the 
lowest conduction subband and the top valence subband.

For some device applications, it might be desirable to emit 
photons propagating along the nanotube axis, which is possible 
in optical transitions between the SWNT subbands character-
ized by angular momenta diff ering by one (Milošević et al., 2003; 
Reich et al., 2004). To achieve the emission of these photons by 
electron heating, it is necessary to have an intersection of such 
sub-bands within the energy range accessible to electrons accel-
erated by attainable voltages. From the analysis of diff erent types 
of SWNTs, it follows that the intersection is possible, for example, 
for the lowest conduction subbands in several semi-conducting 
zigzag nanotubes and in all armchair nanotubes. However, for 
an eff ective THz emission from these nanotubes, it is necessary 
to move the Fermi level very close to the subband intersection 
point (Kibis and Portnoi, 2005). Th erefore, obtaining the THz 
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emission propagating along the nanotube axis is a more diffi  cult 
technological problem than generating the emission shown in 
Figure 5.7b.

5.5  Chiral Carbon Nanotubes 
as Frequency Multipliers

Another proposal for using SWNTs for THz applications (Kibis 
et al., 2008; Portnoi et al., 2008) is based on chiral nanotubes, 
which represent natural super-lattices. For example, a (10, 9) 
SWNT has a radius that diff ers from the radius of the most 
commonly studied (10,10) nanotube by less than 5%, whereas 
a translational period, T, along the axis of the (10,9) SWNT is 
almost 30 times larger than the period of the (10, 10) nanotube. 
Correspondingly, the fi rst Brillouin zone of the (10, 9) nano-
tube is 30 times smaller than the fi rst zone for the (10,10) tube. 
However, such a Brillouin zone reduction cannot infl uence elec-
tronic transport unless there is a gap opening between the energy 
subbands resulting from the folding of the graphene spectrum. 
It can be shown that an electric fi eld normal to the nanotube axis 
opens noticeable gaps at the edge of the reduced Brillouin zone, 
thus turning a long-period nanotube of certain chirality into a 
“real” superlattice. Th is gap opening is a general property of chi-
ral nanostructures exposed to a transverse electric fi eld (Kibis 
et al., 2005a,b; Kibis and Portnoi, 2007, 2008). Th e fi eld-induced 
gaps are most pronounced in (n, 1) SWNTs (Kibis et al., 2005a,b; 
Portnoi et al., 2006, 2008).

Figure 5.8a shows the opening of an electric-fi eld induced gap 
near the edge of the Brillouin zone of a (6,1) SWNT. Th is gap open-
ing results in the appearance of a negative eff ective-mass region in 
the nanotube energy spectrum. Th e typical electron energy in this 
part of the spectrum of 15 meV is well below the optical phonon 
energy ħΩ ≈ 160 meV, so that it can easily be accessed in mod-
erate heating electric fi elds. Th e negative eff ective mass results 
in NDC, as can be seen from Figure 5.8b. Th e NDC character-
istic presented in Figure 5.8b is calculated assuming the energy-
independent scattering time τ = 1 ps. However, when the carrier 
energy reaches the optical or edge-phonon energy, the scattering 
time, τ, increases abruptly. Th is results in more pronounced NDC, 
which can be used for generating electromagnetic radiation in the 

THz range. In fact, recent Monte Carlo simulations (Akturk et al., 
2007a,b) show that the phonon-induced eff ects alone might result 
in THz current oscillations in SWNTs.

Th e eff ect of the negative eff ective mass in chiral nanotubes 
(Portnoi et al., 2008) not only results in NDC but also leads to an 
effi  cient frequency multiplication in the THz range. Th e results of 
calculations of the electron velocity in the presence of the time-
dependent longitudinal electric fi eld are presented in Figure 5.9. 
One of the advantages of a frequency multiplier based on  chiral 
SWNTs, in comparison with the conventional superlattices 
(Alekseev et al., 2006), is that the dispersion relation in such a 
system can be controlled by the transverse electric fi eld, E⊥.

5.6  Armchair Nanotubes in a 
Magnetic Field as Tunable 
THz Detectors and Emitters

Th e problem of detecting THz radiation is known to be at least 
as challenging as creating reliable THz sources. Th e proposal of 
a novel detector (Kibis et al., 2008; Portnoi et al., 2008) is based 
on several features of truly gapless (armchair) SWNTs. Th e 
main property to be utilized is opening of a bandgap in these 
SWNTs in a magnetic fi eld along the nanotube axis (Saito et al., 
1998; Reich et al., 2004). For a (10,10) SWNT, this gap corre-
sponds to approximately 1.6 THz in the fi eld of 10 T. For attain-
able magnetic fi elds, the gap grows linearly with increasing both 
the magnetic fi eld and the nanotube radius. It can be shown 
(Portnoi et al., 2008) that the same magnetic fi eld also allows 
dipole optical transitions between the top valence subband and 
the lowest conduction subband, which are strictly forbidden in 
armchair SWNTs without the fi eld (Milošević et al., 2003).

In Figure 5.10, it is shown how the energy spectrum and 
matrix elements of the dipole optical transitions polarized along 
the nanotube axis are modifi ed in the presence of a longitudi-
nal magnetic fi eld. In the frame of the nearest-neighbor tight-
binding model, one can show that for a (n,n) armchair nanotube 
the squared matrix element of the velocity operator between the 
states at the edge of the gap opened by the magnetic fi eld is given 
by a simple analytic expression:

(a)
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ε(k) (meV)

–—πT
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T
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0.2

1.0 2.0
E|| (105 V/m)

Slight NDC0.8

ν d
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t (
10

5 m
/s

)
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FIGURE 5.8 (a) Energy spectrum of the (6,1) SWNT in a transverse electric fi eld, E⊥ = 4 V/nm. (b) Th e electron drift  velocity in the lowest con-
duction subband of a (6, 1) SWNT as a function of the longitudinal electric fi eld, in the presence of acoustic phonon scattering. (From Portnoi, M.E. 
et al., Superlattices Microstruct., 43, 399, 2008.)
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FIGURE 5.10 (a) Band structure of a (10, 10) nanotube, with and without an external magnetic fi eld along the nanotube axis. (b) Detailed view 
of the gap, which is opened between the top valence subband and the lowest conduction subband in an external fi eld, B = 10 T. (c) Th e change in 
the matrix elements of the dipole optical transitions, for the light polarized along the SWNT axis, due to the introduction of the external magnetic 
fi eld. Th e only appreciable change is in the appearance of a high, narrow peak associated with the transition (10v → 10c), which is not allowed in the 
absence of the magnetic fi eld. Here and in what follows, the energy subbands are numbered in the same way as in Saito et al. (1998). (d) Dependence 
of the squared dipole matrix element for the transition (10v → 10c) on the 1D wave vector, k, with and without an external magnetic fi eld. (From 
Portnoi, M.E. et al., Superlattices Microstruct., 43, 399, 2008.)
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FIGURE 5.9 Time dependence of the electron velocity in the lowest conduction subband of a (6,1) SWNT under the inf luence of a pump 
harmonic longitudinal electric fi eld, E�(t) = E0sin(ω0t), and its correspondent spectral distribution, A(ω): (a) in the ballistic transport regime and 
(b) in the presence of scattering with the relaxation time τ = 10−12 s. (From Portnoi, M.E. et al., Superlattices Microstruct., 43, 399, 2008.)
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4 1ˆ| | 1 cos ,
3 4

c
n z i

fv v
n  

(5.41)

where f = eBR2/(2ħ). For experimentally attainable magnetic 
fi elds, when the magnetic fl ux through the SWNT is much 
smaller than the fl ux quantum, the absolute value of the veloc-
ity operator is close to vF. Equation 5.41 is relevant to the tran-
sitions between the highest valence subband and the lowest 
conduction subband only for f ≤ 1/2, since for the higher values 
of/the order of the nanotube subbands is changed. Notably, 
the same equation allows to obtain the maximum value of the 
velocity operator in any armchair SWNT for the transitions 
polarized along its axis: this value cannot exceed F2 / 3v  (see 
Figure 5.10c).

Th e electron (hole) energy spectrum near the bottom (top) 
of the bandgap produced by the magnetic fi eld is parabolic 
as a function of a carrier momentum along the nanotube 
axis. Th is dispersion results in a Van Hove singularity in the 
reduced DOS that, in turn, leads to a very sharp absorption 
maximum near the band edge and, correspondingly, to a very 

high sensitivity of the photocurrent to the photon frequency 
(see Figure 5.11).

Notably, the same eff ect can be used for the generation of a 
very narrow emission line having the peak frequency tunable 
by the applied magnetic fi eld. A population inversion can be 
achieved, for example, by optical pumping with the light polar-
ized normally to the nanotube axis, as shown in Figure 5.12.

5.7 Conclusion

In this chapter we have demonstrated several novel schemes for 
the emission and detection of the THz radiation by the SWNTs.

We have demonstrated that intensity spectra of the thermal 
electromagnetic fi eld emitted by metallic SWNTs of micron 
length reveal resonances in the THz range. Th ese resonances are 
the geometrical resonances of the surface plasmons in SWNTs. 
It is quite important that we could vary the resonance frequency 
by changing the SWNT length or conductivity. Th e predicted 
eff ect allows to formulate the conception of, metallic SWNT as a 
thermal antenna in the THz range and is of importance for the 
SWNT spectroscopy, the nanoantenna design, the high-resolution 
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near-fi eld optical microscopy, and the thermal noise control in 
nanocircuits.

We also have demonstrated that a quasi-metallic carbon nan-
otube can emit the THz radiation when potential diff erence is 
applied to its ends. Th e typically required voltages and nanotube 
parameters are similar to those available in the state-of-the-art 
transport experiments. Th e maximum of the spectral density of 
emission is shown to have a strong voltage dependence, which is 
universal for all quasi-metallic carbon nanotubes in the ballistic 
regime. Th erefore, the discussed eff ect can be used for creating 
a THz source with frequency controlled by the applied voltage. 
Appropriately arranged arrays of nanotubes should be consid-
ered as promising candidates for active elements of amplifi ers 
and generators of coherent THz radiation.

We have also shown that an electric fi eld, which is applied nor-
mally to the axis of long-period chiral nanotubes, signifi cantly 
modifi es their band structure near the edge of the Brillouin zone. 
Th is results in the negative eff ective-mass region at the energy 
scale below the high-energy phonon-emission threshold. Th is 
eff ect can be used for an effi  cient frequency multiplication in the 
THz range. Finally, we have discussed the feasibility of using the 
eff ect of the magnetic fi eld, which opens energy gaps and allows 
optical transitions in armchair nanotubes, for creating tunable 
THz detectors and emitters.
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